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Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into
their prime factors and seeking out by experimentation the laws
of appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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Abstract

In this talk I will introduce a simple combinatorial model based on
seating rearrangements in a classroom. The model has a natural
extension to arbitrary graphs and connects with various traditional
tiling problems. Many of the solutions to these problems can be
expressed in terms of simple and well-known recurrent sequences like
the Fibonacci numbers and the Pell numbers. In addition to
presenting simple problems and solutions, I will also prove several
general theorems about this model and discuss some interesting
consequences of attempting to ”fix” one of these theorems.
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Original Problem (Honsberger)

A classroom has 5 rows of 5 desks per row. The teacher
requests each pupil to change his seat by going either to the
seat in front, the one behind, the one to his left, or the one to
his right (of course not all these options are possible to all
students). Determine whether or not his directive can be
carried out.
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Seating Rearrangements and Tilings
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Rearrangements on Graphs

Rules

Arbitrary Graphs

In order to count rearrangements on arbitrary graphs, we constructed the
following problem statement:

Problem

Given a graph, place a marker on each vertex. We want to count the
number of legitimate “rearrangements” of these markers subject to the
following rules:

• Each marker must move to an adjacent vertex.

• After all of the markers have moved, each vertex must contain
exactly one marker.

To permit markers to either remain on their vertex or move to an
adjacent vertex, add a self-loop to each vertex (forming a pseudograph)
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Cycle Covers

Digraphs

With this problem statement we can describe these rearrangements
mathematically as follows:

• Given a graph G, construct
←→
G , by replacing each edge in G with a

two directed edges (one in each orientation).

• Then, each rearrangement on G corresponds to a cycle cover of
←→
G .
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Rearrangements on Graphs

Cycle Covers

Cycle Covers

Definition

Given a digraph D = (V,E), a cycle cover of D is a subset C ⊆ E, such
that the induced digraph of C contains each vertex in V , and each vertex
in the induced subgraph lies on exactly one cycle [7].
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Cycle Covers

Permutation Parity

A cycle cover (permutation) is odd if it contains an odd number of even
cycles.
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Cycle Covers

Odd Cycle Cover
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Cycle Covers

Even Cycle Cover
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Rearrangements on Graphs

Permanents

Permanents

The permanent of an n× n matrix, M , is defined as:

per(M) =
∑
π∈Sn

n∏
i=1

Mi,π(i),

• Determinant Similarities

• Differences

• Computational Complexity

• Counting with Permanents
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Rearrangements on Graphs

Examples (Cycle Covers)

Labeled Digraph
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Rearrangements on Graphs

Examples (Cycle Covers)

Adjacency Matrix

A =



0 1 0 0 0 0 0
0 0 1 0 0 1 1
0 0 0 1 0 1 0
0 0 0 1 1 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 1
1 0 0 0 0 0 0


per(A) = 2
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Rearrangements on Graphs

Examples (Cycle Covers)

K8
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Examples (Cycle Covers)

K5,8
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Examples (Graph Families)

Simple Graphs

Graph Rearrangements With Stays
Pn 0, 1, 0, 1, 0... fn
Cn 0, 1, 2, 4, 2, 4... ln + 2 = fn + fn−2 + 2
Kn D(n) n!

Kn,n (n!)2
∑n
i=0 [(n)i]

2

Km,n with m ≤ n 0
∑m
i=0(m)i(n)i
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Rearrangements on Graphs

Easy Theorems

Bipartite Graphs Theorem

Theorem

Let G = ({U, V }, E) be a bipartite graph. The number of
rearrangements on G is equal to the square of the number of perfect
matchings on G.
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Rearrangements on Graphs

Easy Theorems

Bipartite Graphs Proof

Proof.

Sketch.
Construct a bijection between pairs of perfect matchings on G and cycle

covers on
←→
G . WLOG select two perfect matchings of G, m1 and m2.

For each edge, (u1, v1) in m1 place a directed edge in the cycle cover
from u1 to v1. Similarly, for each edge, (u2, v2) in m2 place a directed
edge in the cycle cover from v2 to u2. Since m1 and m2 are perfect
matchings, by construction, each vertex in the cycle cover has in–degree
and out–degree equal to 1.

Given a cycle cover C on
←→
G construct two perfect matchings on G by

taking the directed edges from vertices in U to vertices in V separately
from the directed edges from V to U . Each of these sets of (undirected)
edges corresponds to a perfect matching by the definition of cycle cover
and the bijection is complete.



GSS Talk Fall 2013

Rearrangements on Graphs

Easy Theorems

P2 ×G Theorem

Theorem

The number of rearrangements on a bipartite graph G, when the markers
on G are permitted to remain on their vertices, is equal to the number of
perfect matchings on P2 ×G.
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Rearrangements on Graphs

Easy Theorems

P2 ×G Proof

Proof.

Sketch.
Observe that P2 ×G is equivalent to two identical copies of G where
each vertex is connected to its copy by a single edge (P2). To construct a
bijection between these two sets of objects, associate a self–loop in a
cycle cover with an edge between a vertex and its copy in the perfect
matching. Since the graph is bipartite, the remaining cycles in the cycle
cover can be decomposed into matching edges from U to V and from V
to U as in the previous theorem.



GSS Talk Fall 2013

Rearrangements on Graphs

Easy Theorems

Seating Rearrangements with Stays

• Applying the previous theorem to the original problem of seating
rearrangements gives that the number of rearrangements in a m× n
classroom, where the students are allowed to remain in place or
move is equal to the number of perfect matchings in P2 × Pm × Pn.
These matchings are equivalent to tiling a 2×m× n rectangular
prism with 1× 1× 2 tiles.

• A more direct proof of this equivalence can be given by identifying
each possible move type; up/down, left/right, or stay, with a
particular tile orientation in space.
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Wheel Graphs +

Wheel Graph Order 12
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Wheel Graphs +

Wheel Graphs Rearrangements

The number of rearrangements on a wheel graph of order n is equal to
n2

• n odd

• Uniquely determined by the center vertex: n · n = n2

• n even

• Must create an odd cycle:
n

2
· 2n = n2

n 3 4 5 6 7 8 9 10 n
No stays 9 16 25 36 49 64 81 100 n2

With stays 24 53 108 212 402 745 1356 2435 ⇒
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Rearrangements on Graphs

Wheel Graphs +

Wheel Graph Rearrangements with Stays

The number of rearrangements on a wheel graph when the markers are
permitted to either move or stay is equal to:

nfn+2 + fn + fn−2 − 2n+ 2

.
Condition on the behavior of the center marker:

• if it remains in place,

• Cn = fn + fn−2 + 2

• if it moves to one of the n other vertices,

• nfn−1 + 2n
∑n
k=2 fn−k = nfn−1 + 2nfn − 2n

fn + fn−2 + 2 + nfn−1 + 2nfn − 2n = n((fn−1 + fn) + fn) + fn + fn−2 − 2n+ 2

= n(fn+1 + fn) + fn + fn−2 − 2n+ 2

= nfn+2 + fn + fn−2 − 2n+ 2.
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Flat Wheel of Order 9
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Rearrangements on Graphs

Wheel Graphs +

Counting on Flat Wheels

• Without Stays:
n2 + 2n+ 1

4
(odd) or

n2 + 2n

4
(even).

• With Stays:

fn +

n∑
l=1

fn−l

l−2∑
j=0

[fj ]

+ (fl−1fn−l) +

(
fl−1

n−l−1∑
k=0

[fk]

)
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k−Wheel Graphs (Flower Graphs?)
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Rearrangements on Graphs

Wheel Graphs +

Counting on k−Wheel Graphs (Flower Graphs?)

• Without Stays: 0 (n and k are even) n2 otherwise.

• With Stays:

l(k−2)n+2+nf(k−2)n−1+2nf(n−2)k−(n−1)+2n

k−2∑
i=1

f(k−2)(n−i−1)−1
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Rearrangements on Graphs

Wheel Graphs +

Dutch Windmill D5
4



GSS Talk Fall 2013

Rearrangements on Graphs

Wheel Graphs +

Counting on Dutch Windmills

• Without Stays: 0 (even) or 2m (odd)

• With Stays:

(fn−1)
m + 2m(fn−2 + 1)(fn−1)

m−1
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Wheel Graphs +

Counting on Dutch Windmills

• Without Stays: 0 (even) or 2m (odd)

• With Stays:

(fn−1)
m + 2m(fn−2 + 1)(fn−1)

m−1
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Rearrangements on Graphs

A brief foray into the applied

Hosoya Index of Trees

The Hosoya index is a topological invariant from computational
chemistry that is equivalent to the total number of matchings on a
graph. This index correlates with many physical properties of organic
compounds, especially the alkanes (saturated hydrocarbons).

Theorem

Let T be an n−tree with adjacency matrix A(T ). Then the Hosoya index
of T is equal to det(A(T )i+ In)
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Rearrangements on Graphs

A brief foray into the applied

Hosoya Index Proof

Proof.

Sketch.
Since T is a tree there is a direct bijection between a given cycle cover on←→
T with a self loop added to each vertex and a matching on T .

Furthermore, per(A(T ) + In) counts these cycle covers. To see that
det(A(T )i+ In) = per(A(T ) + In) notice that each 2−cycle and thus
each even cycle counted in det(A(T )i+ In) has a weight of i2 = −1,
and thus that the weight of each cycle cover is equal to the sign of the
permutation.
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Rearrangements on Graphs

A brief foray into the applied

Isopentane Example
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A brief foray into the applied

A(T )

per





0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0





= 584



GSS Talk Fall 2013

Rearrangements on Graphs

A brief foray into the applied

A(T )i+ I17

det





1 i i i i 0 0 0 0 0 0 0 0 0 0 0 0
i 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 1 i i i 0 0 0 0 0 0 0 0 0
0 0 0 0 i 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 i 0 1 0 i i i 0 0 0 0 0 0
0 0 0 0 i 0 0 1 0 0 0 i i i 0 0 0
0 0 0 0 0 0 i 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 i 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 i 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 i 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 i 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 i 0 0 0 0 0 1 i i i
0 0 0 0 0 0 0 0 0 0 0 0 0 i 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 1





= 584
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Rearrangements on Chessboards

Preliminaries (pretty pictures)

Game Pieces

In order to generate well–motivated families of graphs, we turned to the
following problem statement:

Consider an m× n chessboard along with mn copies of a
particular game piece, one on each square. In how many ways
can the pieces be rearranged if they must each make one legal
move? Or at most one legal move? Can these rearrangement
problems be solved with recurrence techniques?
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Rearrangements on Chessboards

Preliminaries (pretty pictures)

8× 8 Rook Graph
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Preliminaries (pretty pictures)

8× 8 Knight Graph
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Preliminaries (pretty pictures)

8× 8 Bishop Graph
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Rearrangements on Chessboards

Return of the Fibonacci

Fibonacci Relations

• 1× n Kings

• Fn

• 2× n Bishops

• F 2
n

• 2× 2n Knights

• F 4
n or F 2

n ∗ F 2
n−1
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Rearrangements on Chessboards

An impractical theorem

LHCCRR Theorem

Theorem

On any rectangular m× n board B with m fixed, and a marker on each
square, where the set of permissible movements has a maximum
horizontal displacement, the number of rearrangements on B satisfies a
linear, homogeneous, constant–coefficient recurrence relation as n varies.
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Rearrangements on Chessboards

An impractical theorem

LHCCRR Proof

Proof.

Sketch.
Let d represent the maximum permissible horizontal displacement. Consider any set of
marker movements that completes the first column. After all of the markers in the
first column been moved, and other markers have been moved in to the first column
to fill the remaining empty squares, any square in the initial m× d sub–rectangle may
be in one of four states. Let S be the collection of all 4md possible states of the initial
m× d sub–rectangle, and let S∗ represent the corresponding sequences counting the
number of rearrangements of a board of length n beginning with each state as n
varies. Finally, let an denote the sequence that describes the number of
rearrangements on B as n varies.
For any board beginning with an element of S, consider all of possible sets of
movements that “complete” the initial column. The resulting state is also in S, and
has length n− k for some k in [1, d]. Hence, the corresponding sequence can be
expressed as a sum of elements in S∗ with subscripts bounded below by n− d. This
system of recurrences can be expressed as a linear, homogeneous, constant–coefficient
recurrence relation in an either through the Cayley–Hamilton Theorem or by the
successor operator matrix [4].
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Recurrence Orders

The bad news...

Recurrence Orders

Although all of these problems lead to LHCCRR solutions, the growth
rate between each instance of a particular set of movements makes it
difficult to learn very much about the recurrences themselves.

• Kings (2, 3, 10, 27, 53, 100+)

• Knights (8, 27, lots)

• Verifying minimality :(
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Hope for the future

Can we bound the order?

• YES!!
•
• Can we do it easily? Sometimes.
•
• Does it impact the asymptotic analysis? Not even close
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Example: Preliminaries

Lemma

The number of distinct Fibonacci tilings S(fn) of order n up to

symmetry is equal to
1

2
(f2k + fk+1) when n = 2k and

1

2
(f2k+1 + fk)

when n = 2k + 1.

Lemma

The number of endings with no consecutive 1× 1 tiles is equal to Pn+2.

Lemma

The number of distinct Padovan tilings S(Pn)of order n up to symmetry

is equal to
1

2
(P2k + Pk+2) when n = 2k and

1

2
(P2k+1 + Pk−1) when

n = 2k + 1.
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Hope for the future

Lemma Proofs

• The second lemma follows from a standard bijective double counting
argument.

• The key to the first and third lemma is to realize that since every
reflection of a particular tiling is another tiling we are over–counting
by half, modulo the self–symmetric tilings. Adding these back in and
a little parity bookkeeping completes the results.
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Hope for the future

Self–Symmetric Fibonacci Tilings
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Example: Conclusion

Theorem

The minimal order of the recurrence relation for the number of tilings of
a k × n rectangle with 1× 1 and 2× 2 squares is at most
S(fn)− S(Pn) + 1.

Table: Toy Example

k 1 2 3 4 5 6 7 8 9 10
Upper Bound 1 4 9 25 64 169 441 1,156 3,025 7,921
O(Tn) 1 2 2 3 4 6 8 14 19 32
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Permanents and Tilings?

Theorem

There does not exist a simple graph whose (maximal) matchings can be
placed into a one–to–one correspondence with the number of tilings of an
m× n rectangle with 1× 1 and 2× 2 squares, when m ≥ 4 and n ≥ 4.
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The Independent Set Graph
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Proof Sketch

Proof.

Sketch. For any m× n rectangle construct a graph whose vertices
represent the (m− 1)(n− 1) possible center positions of a 2× 2 square
tile. Place an edge between any two vertices if a 2× 2 square placed on
the first vertex would intersect a 2× 2 placed on the second. Call this
graph Hm,n.
Notice, that an independent set (Maximal independent set if we place a
self–loop on each vertex) of this graph is equivalent to a legitimate tiling
of the rectangle. This gives us a one–to–one correspondence between
tilings and independent sets. Thus, (maximal) matchings on the graph
Gm,n whose line graph is Hm,n are in a similar correspondence to these
tilings.
Unfortunately, there is no such graph Gm,n, by Beineke’s forbidden
minors theorem for line graphs [7]. Similarly, there is not directed or
pseudo–graph with this property, although there is a family of
hypergraphs, this does not help us count matchings.
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More General Cases

General 1× n Case

In the preceding example, knowing two 1× n cases allowed us to reduce
the upper bound from 1, 156 to 10 without a significant amount of extra
effort. Here we give an expression for all 1× n rectangular tilings, where
the tiles in T are allowed to have multiple colors.
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More General Cases

Notation

We begin by defining some convenient notation. Since we are covering
boards of dimension {1× n|n ∈ N}. Let T = (a1, a2, a3, . . .), where am
is the number of distinct colors of m–dominoes available. Then, Tn is the
number of ways to tile a 1× n rectangle with colored dominoes in T .
Connecting to our example, the Fibonacci numbers would be
T = (1, 1, 0, 0, 0, . . .) while the Padovan numbers have
T = (0, 1, 1, 0, 0, 0, . . .).
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More General Cases

Coefficients

We also need to define a set of coefficients based on the parity of the
domino length and the rectangle length.

cj =


Tn− j2

j ≡ n ≡ 0 (mod 2)

0 j ≡ 0, n ≡ 1 (mod 2)
0 j ≡ 1, n ≡ 0 (mod 2)
Tn− j−1

2
j ≡ n ≡ 1 (mod 2)

(1)



GSS Talk Fall 2013

Hope for the future

More General Cases

Coefficient Motivation



GSS Talk Fall 2013

Hope for the future

More General Cases

Complete Characterization of 1× n Tilings

Theorem

Let T be some set of colored k–dominoes, then the number of distinct
tilings up to symmetry of a 1× n rectangle is equal to

1

2

(
Tn +

∞∑
i=1

aici +
Tn

2

2
+

(−1)nTn
2

2

)
(2)
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More General Cases

Lucas Tilings

It is natural to wonder if these methods could be adapted to give a
similar formula for generalized Lucas tilings on a bracelet or necklace.
Unfortunately, the complexity of the underlying symmetric group makes
this a much more complex problem. Even in the simplest case we have:

Theorem

The number of distinct Lucas tilings of a 1× n bracelet up to symmetry
is:

dn−1
2 e∑
i=0

 1

n− i

∑
d|(i,n−1)

ϕ(d)

(n−i
d
i
d

) (3)
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More General Cases

Example 1

Example

The number of distinct rearrangements on a 2× n rectangle is

1

4

(
f2
2k + f2k + 2f2

k + 2f2
k−1
)

(4)

when n = 2k and
1

4

(
f2
2k+1 + f2k+1 + 2f2

k

)
(5)

when n = 2k + 1
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More General Cases

Example 2

Example

The number of distinct tilings of a 3× n rectangle with squares of size
1× 1 and 2× 2 is

1

3

(
22n−1 + 2n + 2n−1 +

1 + (−1)n

2

)
(6)

when n is odd, and
1

3

(
22n + 2n + 2n−1 + 1

)
(7)

when n is even.
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More General Cases

Rectangle Symmetry

• 2× n: Equivalent to the Fibonacci Tilings

• 3× n: 1
3

(
22n−1 + 2n + 2n−1 + 1

)
when n is even and

1
3

(
22n + 2n + 1+(−1)n

2

)
when n is odd.

• 4× n and 5× n: Hideous, long generalized power sums with a mix
of Fibonacci terms and eigenvalues of the original tiling recurrences

• Example 5× n odd:

1

4

(
2

(
ϕn + ϕn

√
5

)((
ϕn + ϕn

√
5

)2)n
+ (c1α + c2β + c3γ + c4δ)

(
(c1α + c2β + c3γ + c4δ)

2
)n · · ·)
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More General Cases

α =
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That’s all...

Thank You.


	Introduction
	Rearrangements on Graphs
	Rules
	Cycle Covers
	Permanents
	Examples (Cycle Covers)
	Examples (Graph Families)
	Easy Theorems
	Wheel Graphs +
	A brief foray into the applied

	Rearrangements on Chessboards
	Preliminaries (pretty pictures)
	Return of the Fibonacci
	Huge numbers ahead
	An impractical theorem

	Recurrence Orders
	The bad news...

	Hope for the future
	More General Cases

	References

